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I. INTRODUCTION

Following Schoenberg [5] and de Boor [2] one of the present authors [3]
has treated cubic spline interpolation by matching the integral mean of a
function and a spline between successive equidistant knots. Earlier Sharma
and Tzimbalario [6] had studied quadratic splines with similar matching
conditions. Our object is to study deficient cubic splines by making less restric
tive continuity requirements at the joints and having two interpolatory
conditions, one of which is the matching condition at appropriate points of
the dividing intervals while the other is the matching of the integral means.
Corresponding error bound is also obtained in the present paper. It may be
mentioned here that sharp error bounds in different norms have been given
by Varga in [7; Theorem 2.1], where spline interpolation of bounded linear
functionals is studied.

2. REPRESENTATION OF CUBIC SPLINE

Let Ll: 0 = X o < Xl ... < X n = I denote a partition of [0, I] with equi
distant knots Xi so that h = Xi - Xi-l = lin. Let 7TZ be the set of all real
algebraic polynomials of degree at most I. We define the deficient polynomial
spline class S(l, Ll) as

SU, Ll) = {s(x) Is(x) E C I - 2 [O, I], s(x) E 7TZ ,

X E [Xi-I, Xi], i = I, 2, ... , n}.
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Consider a function g(x) defined in [0, 1] such that

g(x + h) - g(x) = a constant K', (2.1)

for example.
Along with (2.1) we also assume that g(x) satisfies one of the following con

ditions:
g(x) = K

g(x) = K

(0 ~ x < mh; 2/9 ~ m < 1/2),

(mh ~ x ~ h; 1/2 ~ m ~ 7/9),

(2.2a)

(2.2b)

where K is any constant. Writing 8i = X i - I + mh; we propose:

PROBLEM A. Let f be a I-periodic locally integrable function with respect
to a positive measure dg, where g satisfies conditions (2.1) and (2.2a) (or (2.2b)).
Find I-periodic s(x) E 5(3, Ll) satisfying the conditions:

{i (f - s)(x) dg = 0,
Xi_l

i = 1,2,... , n. (2.3)

Choosing g(x) such that in [0, h]

g(x) = K for

= K+ 1

°~ x ~ m'h

for m'h < x ~ h,

we may extend the definition of g(x) over [0, 1] by assuming condition (2.1).
In this case the area matching condition in (2.3) reduces to the interpolatory
condition at the points 8; = Xi-l + m'h, i = 1, 2, ... , n. If we now take
m' > m, then (2.3) gives the interpolating conditions at the points 8i and
e; .Thus it follows from a known result ([4], p. 246) that Problem A, with the
above choice of g has a unique solution even for non-equidistant knots
provided l- < m + m' < ! and °~ m < m' ~ 1. It may be observed that
the matching condition (2.3) of Problem A has the scope of providing
interpolatory conditions for a wider choice of m and m'. For example, if we
take m < m', 2/9 ~ m and m + m' ~ t. then the hypotheses of Problem
A are satisfied for the above choice of g and we obtain interpolatory condi
tions, which are not covered by the result proved in [4].

Writing S'(Xi) = M i , i = 0, 1, ... , n, we now proceed to obtain a representa
tion of cubic spline s(x) of our Problem A in terms of M;'s. Since s'(x) is a
quadratic in Xi-l ~ x ~ Xi , we have for x E [Xi-I' Xi]

h2s'(x) = Mi[(x - Xi-I) - 2(Xi - x)](x - Xi-I)

+ Mi-I[(Xi - x) - 2(x - Xi_I)](Xi - x)

+ 6{3i(Xi - x)(x - Xi-I)' (2.4)
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where {3;'s are constants to be determined by the hypotheses concerning sex).
Integrating (2.4) and simplifying, we get

h2s(x) = - Mi(x - Xi-I)2(Xi - x)

- Mi-I[t(Xi - X)3 + t(x - Xi-l)3 + (x - Xi_I)2(Xi - x)]

+ {3;(x - Xi-I)2[3(Xi - x) + (x - Xi-I)] + 0ih2 (2.5)

and using the continuity of sex) at Xi , we have

{3ih = lh(Mi- 1 - Mi) + Oi+l - 0i .

For i = I, 2, ... , n, we set

(2.6)

hf xr(h - x)P dg = hr+PK(r,p),
o

and observe that in view of condition (2.1),

r,p=0,1,2,3;

(i (x _ Xi_I)'(Xi - x)P dg = hr+PK(r, p),
Xi_l

for all r, p and i.

3. EXISTENCE AND UNIQUENESS

We now answer Problem A in the following:

THEOREM I. There exists a unique sex) E S(3, .1) which satisfies the
conditions of Problem A provided that g(x) does not have just one jump in
[0, h] at the point mh, °~ m ~ I.

For the proof of our Theorem we need the following.

LEMMA. Suppose g(x) does not have just one jump at mh, °~ m ~ I in
[0, h] and let

h

K1(m) = h-3f (x - mh) cx(m, x) dg,
o

(3.1)

K2(m) = h-3r (x - mh)[cx(m, x) - h2]dg,
o

where cx(m, x) = -2x2 + h(3 - 2m)(x + mh). Then both K1(m), Klm) are
positive or negative according as (2.2a) holds or (2.2b) holds.
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Proofof the Lemma. We see that cl(m, x) vanishes at only one point in
[0, h] and cx(m, x) > h2 at that point provided 2(9 :s;; m :s;; 7(9. Also cx(m, x) >
h2 at x = 0, h. Now, if we assume (2.2a), then

K2(m) = h-3r (x - mh)[cx(m, x) - h2] dg > 0,
mh

since the integrand is positive for x > mh and g(x) does not have just one
jump at mho This, of course, gives that K1(m) > 0. The other part of the
lemma follows by similar reasoning.

Proof of Theorem 1.

In order to eliminate i3i , Oi+1 and f3i from Eqs. (2.5) and (2.6), we observe
that in view of the first matching condition in (2.3), we have

where t2 = th(I - m) and t4 = m2(3 - 2m). Comparing the values of f3ih
as obtained from (2.6) and (3.2), we get

f(Bi) + !Mihm2(6 - 5m) - !Mi_1h(m - 1)3

= t4(i3 i+l - i3 i) + i3i . (3.3)

Now eliminating f3i between (2.5) and (3.2), we have

h3t4S(X) = Mihm2[(1 - m)(x - Xi_1)3 - m(x - Xi-l)2(Xi - x)]

-!hMi_1[(m - 1)3{3(x - Xi_1)2(Xi - x) + (x - Xi-1)3}

+ t4(Xi - X)3]

+ (f(Bi) - i3i)(x - Xi_1)2[3(xi - x) + (x - XH)]

+ i3i t4h3• (3.4)

Thus, using the area matching condition in (2.3) and writing Fi = f~:_, f dg,
we have

Mihm2[(1 - m)K(3, 0) - mK(2, 1)]

-lMi_1h[(m - I)3{3K(2, I) + K(3, o)} + t4K(0, 3)]

+ (f(Bi) - i3i)[3K(2, 1) + K(3, 0)] + i3it4K(0, 0) = Fit4 • (3.5)

We see that the coefficient of -i3i in (3.5) is K1(m) which is nonzero by virtue
of the lemma. Thus, we may determine i3 i , 0H1 from the equations of the type
(3.5). Substituting the values so obtained in (3.3) and observing that

K(2, I) = K(2, 0) - K(3, 0),

K(O, 3) = K(O, 0) - 3K(I, 0) + 3K(2, 0) - K(3, 0),
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(3.6)

we have, after some simplification a linear system of equations in M/s
(i = 1,2,... , n):

p(m) M i+1 + q(m) M i + rem) M i - 1 = Ui

where p(m) = hm2[K(3, 0) - mK(2, 0)],

q(m) = h[(l - m) m2K(0, 0) + 14K(l, 0)
+ (2m2 - 2m - I){(m + I)K(2, 0) - K(3, O)}],

rem) = h(l - m)2[-mK(0, 0) + (2m + l)K(l, 0)
- (m + 2)K(2, 0) + K(3, 0)],

Ui = (l - (4) Fi + 14Fi +1 - f(8 i)K(0, 0)
+ 16(/(8i ) - f(8i+1))

and 16 = 3K(2, 0) - 2K(3, 0).
Considering first the case in which g(x) = K for x E [0, mh], we notice that

the coefficients of M H1 and M i - 1 are positive whereas the coefficient of M i is
negative. Further, the excess of the positive value of the coefficient of M i over
the sum of the coefficients of M i - 1 and M i +1 is K 2(m) which is positive by
virtue of the lemma. Thus, Eqs. (3.6) exhibit the diagonal dominant property
and have a unique system of solutions.

In the other case in which g(x) = K for x E [mh, h], the coefficient of M i is
positive whereas the coefficients of M i +1 and M i - 1 are negative and the sum of
the coefficients is -K2(m) which is positive by virtue of the lemma. Thus,
Eqs. (3.6) have the diagonal dominant property in this case also. This com
pletes the proof of Theorem 1.

4. ERROR BOUNDS

We shall consider in this section error bounds for the spline of Theorem 1.
Let us write Eqs. (3.6) as

(4.1)

where Am is the coefficient matrix and M and Um are single column matrices
(Mi) and (Ui), respectively. It may be observed that (cf. [1], p. 21) the row
max norm:

[[ A;;;l II :'( {I q(m)1 - Ip(m)1 - I r(m)l}-l = I K2(m)I-1, (4.2)

where K 2(m) is given by (3.1).
Since under the hypothesis (2.1),

FHi - Fi = (Hl (f - n dg +(' (fi - f) dg,
Xi Xi-l
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therefore, we have II Um II ~ Kim)w(f; h), where w is the modulus of con
tinuity of f(x) and

K3(m) = [(2t4 + I)K(O, 0) + 6K(2, I) + 2K(3, 0)]. (4.3)

Thus, we have from (4.2)

(4.4)

If F denotes the single column matrix (f;) then we have from (4.1)

(4.5)

Now using the law of the mean, we get

II Um - AmFl1 = m!lx I hj'('YJiHt4 K(0, 0) + (l - t4) K(l, 0) - t6},
+ hj'('YJi+l) t4 K(l, 0) + mhj'(gi){t6 - K(O,O)}

- mhf'(gi+l) t6 - r(m)/;~l - q(m)f: - p(m)fi-l I, (4.6)

where gi , 'YJi are points interior to [Xi-I, Xi] such that gi < Oi . Thus, rearrang
ing the terms in (4.6) suitably, we have

(4.7)

where w1(f; h) is the modulus of continuity of j'(x) and

Klm) = (-3m3 + 4m2 + m)K(O, 0) + K(l, 0) + (2m3 - 3m + 8)K(2, 0)

+ (2m2 - 2m + 5)K(3, 0).

Thus, in view of (4.2) and (4.5), we have

(4.8)

We are now set to prove the following.

THEOREM 2. Suppose sex) is the deficient cubic spline of Theorem 1 inter
polating f(x) andf(x) E Cl[O, 1]. Then

and

max I sex) - f(x)1 ~ K(m) w(f; h)
'"

(4.9)

max I s'(x) - f'(x)1 ~ K'(m) w(f; h) + K"(m) w1(f; h), (4.10)
'"

where K(m), K'(m) and K"(m) are functions only depending on m.
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Proof of Theorem 2.

In order to get the error bounds for sex) - f(x) we just consider the case
in which (2.2a) holds. Similar considerations give the bounds for the other
case. Substituting the value of 8 i from (3.5) in (3.4) and writing x =
t(Xi-1 + Xi + mh) + E, we have

h3tis(x) - f(x»

= M ihm2[(t1 + E)2(t2+ E)
-{K1(m)}-1{t4h3 - (t1 + E)2(t3 - 2E)2}(K(3, 0)

- mK(2, 0»]

-!hMi _ 1[(m - 1)3(t3 - 2E)(t1 + E)2 + t4(t2 - E)3

- {K1(m)}-1{t4h3 - (t2+ E)2}(t3 - 2E){(m - 1)3(3K(2, 1)

+ K(3, 0» + t4K(0, 3)}]
+ {K1(m)}-1t4 [t4h2 - (t1 + E)2(t3 - 2E)][Fi - f(8 i )K(0, 0)]

+ t4h2(f(8i ) - f(x»,

where t1 = th(l + m), and t3 = (2 - m)h. Now observing that I E I ~ t1
and applying (4.4) we get

max I sex) - f(x)[ ~ K(rn) w(j; h),
x

where K(m) depends only on rn.
Next differentiating (3.3) and substituting the value of 8 i from (3.4) and

setting x = t(Xi-1 + Xi + mh) + E we get

h2tis'(x) - M i)

= M ih[m2(t1+ E){t(h + t3) + 3E} - h2t4

+ 6(K1(rn»-1ts(K(3, 0) - mK(2, 0»]

-6(K1(m»-1t4tS [Fi - f(8 i )K(0, 0)]

-!hMi _ 1[--3t4(t2 - E)2

+6(K1(m»-1t4tS«m - 1)3K(0, 0) + K(O, 3»],

where ts = th2 - nmh + E)2. Thus, observing that I E I ~ t1 and applying
(4.4) we have

max [ s'(x) - M i I ~ K5(rn) w(f; 11),
x

where Ks(m) depends only on m.
Now observing that

I s'(x) - f'(x) I ~ I s'(x) - M i I + I M i - f/ I + If/ - r(x)1

we obtain (4.10) when we appeal to (4.8) and (4.11).

(4.11 )



106 DIKSHIT AND POWAR

ACKNOWLEDGMENT

The authors would like to thank Professor A. Sharma of the University of Alberta for
some helpful suggestions.

REFERENCES

I. J. H. AHLBERG, E. N. NILSON, AND J. L. WALSH, "The Theory of Splines and Their
Applications," Academic Press, New York, 1967.

2. C. DE BOOR, Appendix to "Splines and Histograms" pp. 329-358, ISNM, Vol. 21,
Birkhiiuser Verlag, Basel.

3. H. P. DIKSHIT, On Cubic spline interpolation, J. Approx. Theory 22 (1978), 105-111.
4. A. MEIR AND A. SHARMA, Convergence of a class of interpolatory splines, J. Approx.

Theory 1 (1968), 243-250.
5. I. J. SCHOENBERG, "Splines and Histograms (Splines and Approximation Theory),"

pp. 277-327, ISNM, Vol. 21, Birkhauser Verlag, Basel.
6. A. SHARMA AND J. TZIMBALARIO, Quadratic Splines, J. Approx. Theory 19 (1977),

186-193.
7. R. S. VARGA, Error bounds for spline interpolation, In "Approximation with Special

Emphasis on Spline Functions" (I. J. Schoenberg, Ed.), pp. 367-388, Academic Press,
New York, 1969.


